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Part II 

I. Introduction: What Has Been Learned from Part I 

Part I of the book provides an overview of the main neoclassical models and 

implications. That model provides a nicely connected schematic of how prices and outputs 

of the goods and services are determined—or perhaps more accurately, tend to be 

determined or drawn towards—in well-functioning markets.  Prices emerge because terms of 

trade are part of the process of buy and selling goods, whether for money or in exchange for 

other goods (barter).  Such terms of trade, in a sense, determine the prices of all goods and 

services.  What neoclassical theory demonstrates is that in cases where more than one 

consumer and more than one firm are involved, there are tendencies in these terms of trade 

that can be deduced if it is assumed that consumers and firms have reasonably stable and 

consistent aims in life.   

To that end, relatively simple models of the aims in life were developed—initially by 

utilitarians in the late 18th and 19th centuries, but subsequently adopted by social scientists 

that use “rational choice” models to analyze social phenomena. For economists, this implied 

that consumers attempt to maximize net benefits or utility. Firm owners and managers 

attempt to maximize profits insofar as production are means rather than ends—although 

ultimately, they too are regarded to be utility maximizers. As long as their choice settings are 

well understood (by themselves and the model-builders relying on such coherent objective 

functions) their choices could be analyzed as constrained optimization. The mathematical 

implications of constrained optimization, in turn, implied that consumers had various 

demands (wants that they could attempt to satisfy using money and other resources at their 

disposal) and that firms had various opportunities for suppling services that consumers 

might purchase.   

Equilibria in such market networks emerge when prices adjust so that supply equals 

demand in all of the markets of interest.  Indeed, price vectors exist that can simultaneously 

“clear” all markets.  Few neoclassical economists would insist that every market is always in 

equilibrium (although a few may do so).  Rather the models are thought to reveal tendencies 
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that all markets exhibit.  Firm owners produce their products at approximately least cost, 

which requires hiring particular mixes of inputs that are jointly determined by production 

technology, input prices, and demands for the outputs to be produced.  Consumers, likewise, 

choose combinations of goods that are expected add most to their lifetime satisfaction 

(utility), given their wealth, market prices, and their long-term objectives (tastes, preferences, 

etc.). 

In the models developed before WWII, both consumers and firms were usually 

assumed to have complete (perfect) information about all the factors that generated their 

choices—even though most thoughtful economists recognized that that would rarely if ever 

be true, except perhaps in markets where the same products had been purchased and sold 

for many years.  In the second half of the twentieth century, far more attention was given to 

the often-unstated informational assumption being made about both firms and consumers. 

These generated many extensions of the basic model worked out by neoclassical 

economists—and in some cases, induced more caveats and more complex models.  

Nonetheless, the neoclassical models provide the points of departure for most contemporary 

research.  Both theoretical and empirical economic research generally rests on neoclassical 

foundations.  

II. Overview of Part II 

   Part II focuses on some important implications of time and imperfect information 

and changes in information that affect the pattern of exchange in societies with significant 

market networks. In the core models of neoclassical economics, neither firms nor consumers 

ever make mistakes. There are no agency problems within firms and no disappointments 

about the products produced and sold—more over nothing new is ever produced. Although 

it was well known that such things happened, the first geometric and mathematical models 

abstracted from such problems.  

These neglected factors were analyzed in what might be called the second-generation 

models or extended neoclassical models. In many cases, analysis of the effects of imperfect 

information undertaken somewhat narrowly and separately, rather than integrated into 

neoclassical models. Although not thoroughly integrated into the core neoclassical models, 
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the results helped to explain the variation in prices for similar goods that violate some of the 

conclusion of the perfect competition model. For example Stigler’s (1961) model of the 

effect of limited knowledge of prevailing prices helped to explain why prices of similar goods 

usually vary. Similar somewhat fewer sharp implications were reached for outputs, profits, 

and patterns of exchange.  

Part III explores extension of the neoclassical models to choice settings other than 

those  that directly involve production, exchange, or innovation. It turns out, however, that 

micro-economic extensions to such fields and law and economics, political economy, and 

socioeconomics besides providing insights into the nature of law, politics, and non-market 

social interactions also have implications about the extent of trade and the rate at which 

commerce expands (or contracts) through time. Thus, these topics are not truly beyond 

economics but provide explanations for differences among market equilibria at a point in 

time and through time, and also shed light on potential sources of disequilibria and 

adjustments toward new equilibria. 
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Chapter 6: Intertemporal Choice 

I. Introduction 

Most neoclassical models are timeless in the sense that “time” is left out of the 

model. That is not because time is never important, but because for some purposes leaving 

time out of a model or analysis does not undermine its ability to help us better understand 

the puzzle or phenomena being modeled and analyzed.  If a consumer decides that he or she 

will spend one month’s wages in a particular way, the fact that the actions associated with 

that decision do not take place for a month (or year or decade) does not necessarily influence 

the optimization process that led to that decision or its consequences for market prices. The 

period of analysis is simply assumed to be the one that is relevant for the decision and 

usually its associated action to take place.   

However, there are cases in which time matters.  Time cannot be ignored when 

actions are taken today that affects one’s possibilities in the future—if one is rational and 

forward looking. Indeed, the phrase “forward looking” implies that decisionmakers take 

account of the consequences of present actions on future possibilities. For example, a 

consumer’s decision to spend a certain amount of money in the future may affect the extent 

to which he or she works  today.  Or, planning ahead may affect present consumption 

decisions reducing present consumption provide additional money for future expenditures. 

Or, a consumer may engage in the opposite type of behavior. He or she may borrow against 

future income to pay for capital goods (computer, automobile, house, etc. ) or for ordinary 

consumption today.   

The same logic applies to decisions made by economic organizations (firms) who may 

borrow against future profits to pay for capital goods that will be used in production today 

or in the near future—or attempt to build a cash reserve today that can be used smooth out 

predictable fluctuations in a firm’s  cash flow over the course of time.  (Many businesses 

have sales patterns that are connected with the seasons and business cycles and hold onto 

their employees because it reduces training and recruiting costs during both sorts of cycles 

when they are believed to be temporary. They may, for example, create a wages fund, saving 
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some net income during the most profitable times in the year to pay their employees in the 

less profitable times. Teams and the knowledge of the routines required for efficient team 

production benefit from stability of the team members. Examples of seasonal demands 

include the  demand for toys, holiday foods and beverages, and the market for housing 

(because of school year effects).  

The demand for savings and loans creates a market for a variety of products that 

would not exist in a timeless world—various types of financial firms emerge to service such 

desires for intertemporal services. In most cases, such firms serve as “intermediaries” 

between persons desiring to save and those desiring to borrow, with the interest rate or rate 

of return on investment being the benefit for savers and the cost for borrowers. As a 

consequence types of loans and savings accounts exist that would not except for their time-

dependent interest in saving, long term investments, and borrowing.    

This chapter develops some mathematical methods and models that can be used to 

characterize both intertemporal decision making and markets for savings and loans. Again 

the focus is on optimization, and again the focus is on circumstances in which buyers and 

sellers (borrowers and savers) are fully informed about the alternatives being bought and 

sold. It is the timing of such decisions and actions that are the main focus of attention, 

rather than being put aside to simplify the analysis.  

For the most part, optimal decisionmaking through time rests on the notion of 

present discounted value—the mathematics of which emerges naturally when it is 

recognized that both borrowing and saving have opportunity costs.     

II. Intertemporal Choice: Time Discounting and Present Values 

The simplest way to think about “present discounted value” is to think about the 

amount in the present (PV) that you would be indifferent to having now rather than some 

other value (F) in in T years.   

One way to estimate this, if one thinks in money terms, is to calculate the amount of 

money that one would have to invest today to have F dollars T years in the future. 

• If the interest rate or rate of return is r, one can just apply the compound interest 

formula.   PV (1+r)T = F 
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• Solving for PV yields PV = FT/(1+r)T  which is the basic formula for calculating the 

present value of some value in the future. 

• To make the formula concrete, suppose that F is $20,000 that T=2 and R=3% or 

0.03.  In that case, PV = (20,000)/(1.03)2 = $18851.92 

• Notice that PV of future among F goes down when the interest increases and when 

the time period increases. 

• The PV of $20,000 in two years at an interest rate of 5% is    

 PV = (20,000)/(1.05)2 =$18,140.59 

• The PV of $20,000 in ten years at an interest rate of 5% is    

  PV = (20,000)/(1.05)10 = $12,278.27 

If one thinks purely in financial or money terms, one would be indifferent between 

$12,278.27 today and $20,000 in 20 years.  This assumes that no inflation occurs (or that FT 

is in inflation adjusted terms) and that there is no risk involved about whether the future 

amount will be paid or not.  When one takes account of inflation either everything should be 

in inflation adjusted (real) terms (including the interest rate, where the real interest rate is the 

nominal rate of interest less the average annual inflation rate over the period of interest)—or 

everything should be in nominal (ordinary dollar) terms. When there is the risk that amount 

F will not be paid, then one needs to also take account of the risk using the methods that 

will be developed in chapter 7.  

Let Ft be the value of some asset or income flow "t" time periods from the present 

date. Let r be the interest rate per time period over this interval. The present discounted 

value of Ft is     

P(Ft)  =   Ft/(1+r)t       (1) 

The present value (here P) of a series of future income flows (which may be positive 

or negative) is simply the sum of the present values of the individual elements of that series. 

When done over T years when the interest rate is r (as a fraction) per period the present 

value is:  

         𝑃 =  ∑ 𝐹𝑡 /(1 + 𝑟)𝑡𝑇
𝑡=1        (2) 
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The present discounted value of any series of values is the sum of the individual present 

values of each element of the series. This formula always “works” but it is somewhat 

cumbersome to use as the planning period, T, becomes relatively large. 

Many decisions involve long term flows of costs and benefits that need to be 

evaluated by a decision maker or group of decisionmakers. These flows are easiest to 

compare if one can construct a common “metric” for the purposes of comparison.  The 

present value of a series of benefits and/or costs through time is the amount, P,  that one 

could deposit in a bank at interest rate r and used to replicate the entire stream of benefits or 

costs, F1, F2, F3, ... FT.  That is to say, you could go to the bank in year 1, withdraw the 

amount (B1) for that year, return in year 2, pull out the relevant amount for that year (B2), 

and so on ... . When thought of in this way, it should be obvious that the present discounted 

value of a series of future amounts is simply the sum of the present values of each element 

of the series—which is in equation 2.  

Another useful formula is one that characterizes the present discounted value of a 

steady flow of values on off into the next T years. In cases where a constant value is received 

through time, e.g. v = F1 = F2 … = Ft … = FT, a bit of algebra allows the above present 

value formula to be reduced to: 

  P = v [ ((1+r)T - 1)/r (1+r)T]     (3) 

This formula can be derived as follows:  

First multiply    𝑃 =  ∑ v/(1 + 𝑟)𝑡𝑇
𝑡=1   by (1+r) which yields     

    (1+r)𝑃 =  ∑ 𝑣/(1 + 𝑟)𝑡𝑇−1
𝑡=0  

Subtract P from (1+r) P which yields: rP = v [ 1/(1+r)0 - 1/(1+r)T )].  (Note that all the terms 

in the two sums are the same except for the first and last one, so they cancel out.) Recall that 

1/(1+r)0 = 1 so rP = v [ 1- 1/(1+r)T )] . Putting the lefthand term over a common 

denominator yields  rP = v [ (1+r)T - 1] / [(1+r)T]. Dividing both sides by r yields   

   P = v [(1+r)T - 1] / [r (1+r)T]      QED1. 

 
1 QED is an abbreviation for the Latin phrase quod erat demonstrandum, which means "that which was to be 

demonstrated". It is often used at the end of a mathematical proof 
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Note that this constant flow of benefits (or costs) formula has a limit as T 

approaches infinity, namely:   P = v/r  .  This is a very convenient formula. There are many 

long-term investments and regulatory policies that have very long lives that can be thought 

of as infinitely lived investments as a “first approximation”, because the last few billion 

terms have little effect on the present value of long term flows of costs or benefits.  

Illustrative Applications 

These formulae can, for example be used for cost benefit analysis.  Suppose that a 

dam can be built that cost $1,000,000 and will produce $50,000/year in electricity for 40 

years. Is the dam worth building if the interest rate is 5%/year?  

• Use the PV formula: P = v [ ((1+r)
T
 - 1)/r (1+r)

T
]  

• The PV of the future benefits are       

 P = 50,000[((1.05)40 – 1)/(.05)(1.05)40 ] = $857,954.31   answer NO 

• What if the interest rate is 2%/year? In this case PV = $1,367,773.96  answer YES 

• Discount rates matter.  Note that the benefits off in the distant future are worth far 

less when r = 0.05 than when r = 0.02 

• Note that if the dam would provide electricity forever, then    

 P = v/r = $50,000/0.05 = $1,000,000  in that case the dam project exactly 

breaks even (ignoring any maintenance expenses) But, also note that the all the years 

after year 40 add relatively little to the present discounted value of the future 

benefits. 

 Suppose that Al can afford to pay $5000/year in car payments for 5 years toward a 

new automobile. If the bank’s opportunity cost rate of return is 7%, what is the largest 

amount that the bank will loan Al given his budget?     

• Use the PV formula: P = v [ ((1+r)
T
 - 1)/r (1+r)

T
]  

• P = 5000 [ ((1.07)5 – 1)/r(1.07)5] = $20,500.99 

• That is the bank’s opportunity cost of tying up P dollars during the 5 years the loan 

will be repaid. 

III. Intertemporal Choices Using the Present Value Formulae 

These sorts of present value calculations can all be used to determine the net-benefit 

maximizing decisions whenever the payoffs and costs of functions of a control variable of 
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interest such as an investment in some capital good. In many cases, the time-dimension of 

the choice is not as central as might have been expected. In others, the time dimension is 

quite important. 

Suppose that a project of interest has upfront costs that vary with the output to be 

produced, which involves a loan to purchase a capital good.  The loans annual payments are 

rc(K) where r is the prevailing interest rate and c(K) is the cost of the capital. The annual 

cost of capital in that case is rc(K). The capital, in turn,  generate benefits such as revenues 

(R) that vary with the extent of the capital purchased, as with R=f(K, P) where P is known 

and expected to be constant during the planning period. If the life of the project is T years, 

the present value of the net benefits or profits from the project can be written as:  

 = [𝑓(𝐾, 𝑃) − 𝑟𝑐(𝐾)][ ((1 + r)𝑇  −  1)/r (1 + r)𝑇]   (4) 

Differentiating with respect to K and setting the result equal to zero yields: 

𝐾 = [𝑓𝐾 − 𝑟𝑐𝐾] [
(1+r)𝑇 − 1

r
(1 + r)𝑇] = 0 at K∗    (5) 

Multiplying both sides of equation 5 by 1 over the second term in bracket yields: 

[𝑓𝐾 − 𝑟𝑐𝐾] = 0. 

The first order condition, perhaps surprisingly, is not affected by the planning horizon T nor 

by the discount factor (the term inside the second set of brackets).   

The interest rate matters, but only because this determines the annual cost of the 

capital good being employed.  To maximize the profits from a capital project of this sort, 

one simply purchases capital so that the annual marginal revenue generated (𝑓𝐾) equals its 

annual marginal cost (𝑟𝑐𝐾). 

The same sort of calculation can be undertaken for irregular flows of benefits and 

costs using the original summation version of the present value formula.  For example, 

suppose that the benefits from the capital purchase varied through time—perhaps 

systematically, perhaps not. In that case, the objective function would be: 

 =  ∑ [𝑓(𝐾, 𝑃)𝑡 − 𝑟𝑐(𝐾)]/(1 + 𝑟)
𝑡𝑇

𝑡=1     (6) 

And the associated first order condition, using subscripts to denote partial derivatives 

with respect to the variable subscripted, is:  
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𝐾 =  ∑  [𝑓𝑡𝐾 − 𝑟𝑐𝐾]/(1 + 𝑟)
𝑡𝑇

𝑡=1 = 0 𝑎𝑡 𝐾∗
   (7) 

In this case, one sets the present discounted value of the marginal revenue (or other 

benefit) generated by the capital project equal to the present discounted value of the 

cost of the capital project.  The irregularity of the marginal benefit flows is important, 

and as their present discounted value falls, a smaller capital investment becomes 

optimal. Such a reduction in the present value of marginal revenues, for example, be 

caused by an increase in the discount rate for a project that has increasing revenues 

(or other benefits) through time.  (That effect would be reinforced by an increase in 

the marginal cost of capital through its effect on the annual cost of the capital 

project.) 

IV. Intertemporal Utility Maximization 

The above model can also be applied to consumer choice models based on the net-

benefit model developed in Chapter 2.  And in some cases, it may be extended to the the 

utility maximizing model, if one believes that a plausible lifetime utility function has the form   

𝑈 =  ∑ 𝑢𝑡(𝑋1𝑡 , 𝑋2𝑡) /(1 + 𝑟)𝑡𝑇
𝑡=1 .  Intertemporal utility maximization problems generally 

express the relevant budget constraints in present discounted value terms, with W equal to 

the present value of future or lifetime income, as with 𝑈 =  ∑ 𝑌𝑡/(1 + 𝑟)𝑡𝑇
𝑡=1 ,  and 

expenditures on goods and services also represented as the present discounted value of 

future expenditures, as with 𝐸 =  ∑ (𝑃1𝑡𝑋1𝑡 +  𝑃2𝑡𝑋2𝑡) /(1 + 𝑟)𝑡𝑇
𝑡=1 .   

As with our models of consumer choice and a firm’s production decisions, , a good 

deal about the nature of intertemporal choices can be generated from simple two or three 

period models of choice. This greatly reduces the mathematical complexity of such models, 

without much loss of generality. 

Suppose that Al’s utility function is U = u(C1, C2) and her intertemporal budget 

constraint is  Y1 + Y2/(1+r) = C1 + C2/(1+r) , where Y1 and Y2 are incomes in period 1 and 

2, r is the interest rate or opportunity cost rate of return, and C1 and C2 are consumption 

levels in the two periods. Note that Al’s person’s wealth, W, is the present value of current 

and future income, and r is the relevant interest rate. Note also that the effect of time 
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discounting is left implicit in this characterization and might be based on the present value 

formula or might not. Let’s also assume that either there is no inflation or that the income 

and consumption flows and the interest rates are in “real” or inflation adjusted terms. 

Both the Lagrangian and substitution methods can be used to characterize Al’s 

optimal consumption expenditure in each period. Concrete functional forms such as the 

Cobb-Douglas and its variations with exponents that do not sum to one allow consumption 

in both periods to be characterized as a function of wealth, interest rates and prices in the 

two periods.  

An Illustrating Example with a Concrete Functional Form   

Let U = C1
aC2

b  and let  Y1 + Y2/(1+r) - C1 - C2/(1+r) = 0. Form a Lagrange 

equation and then differentiate with respect to C1, C2, and λ.  

L = C1
aC2

b + λ(Y1 + Y2/(1+r) - C1 - C2/(1+r))      (8)  

For the purpose of this model, we’ll denote partial derivatives of the Lagrange function with 

subscripts.  

LC1 = aC1
a-1C2

b – λ = 0 

LC2 = bC1
aC2

b-1 – λ(1/(1+r) = 0 

L λ = Y1 + Y2/(1+r) - C1 - C2/(1+r) = 0 

Shift the lambda terms in the first to equation to the right, divide the first equation by the 

second, and simplify (as usual for this type of function using the Lagrange method). 

aC1
a-1C2

b / bC1
aC2

b-1 = λ/( λ(1/(1+r))  

aC2/bC1= 1+r      

The ratio on the left can be interpreted as the marginal rate of substitution between 

current and future consumption. Note that at the utility maximizing levels of C1 and C2, the 

marginal rate of intertemporal substitution is equal to 1 plus the interest rate. The marginal 

rate of substitution between future and current consumption is sometimes called the subjective 

rate of time discount. 

Solve for C2 as a function of C1 and then substitute that into the constraint (L λ). 

C2 = [b(1+r)C1/a]     (9) 
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Substituting yields: Y1 + Y2/(1+r) - C1 - [b(1+r)C1/a]/(1+r) = 0 . Shift the C1 terms to the 

right (e.g. add the negative of their values to each side) and factor. 

Y1 + Y2/(1+r) = C1 + [b(1+r)C1/a]/(1+r) = C1 (1+b/a) = C1 [(a+b)/a] 

Divide and reverse to find Al’s demand curve for present consumption: 

C1* = [a/(a+b)][Y1 + Y2/(1+r)]      (10) 

Note that this is analogous to the usual C1* = [a/(a+b)]W/P of the usual non-

intertemporal demand functions derived from this family of functions, but here W = [Y1 + 

Y2/(1+r)]  and P = 1+r, since we measured current consumption in dollars rather than in 

goods and services.  (In effect we are holding the prices of current and future consumption 

constant.) Note also that C1* falls as r increases and increases as income in either period 

increases.2 

The geometry of a typical 2-period intertemporal choice is depicted below. The 

extent of Al’s savings is the differences between current income and current consumption, 

Y1 – C1*, which will be negative if he or she borrows against future income to increase 

his/her current consumption.  

 

C1

C2

Y  + /(1+r)1 2Y

Y (1+r) + Y1 2

Illustration of Intertemporal Choice
(2 periods)

C *2

C *1

Y2

Y1

{

borrowing{

repayment

 

 
2 To find C2

*, substitute C1
* into equation 9. C2

* = [b(1+r){[a/(a+b)][Y1 + Y2/(1+r)]}/a] which simplifies to C2
* = 

[b(1+r)/(a+b)][Y1 + Y2/(1+r)].  Note the extra (1+r) in the formula for ideal future consumption relative to the 

equivalent atemporal calculation of demand using functions from this family.  Without that term, one would have 
characterized the present discounted value of future consumption rather than its actual level. 
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Geometrically, the above model of intertemporal choice looks like an ordinary consumer 

choice problem except the axes represent present and future consumption. 

Note that in the circumstances modeled, the subjective rate of time discount will be 

set equal to the interest rate plus 1. The indifference curve tangency implies that the slope 

the highest indifference curve that can be reached is equal to the slope of the intertemporal 

budget line. (This is one interpretation of the first steps of solutions to a Lagrangian 

representation of the choice, as noted above, and it can be derived from the substitution 

method as well.)  

Intertemporal Choices with Abstract Utility Functions 

Given an abstract function form for an individual’s utility function, calculus can be 

used to characterize the effect of changes in interest rates on a person’s maximal utility levels 

and to characterize C1* and C2*.  The first-order condition(s) will again imply that the 

marginal rate of substitution between future and current consumption is equal to one plus 

the interest rate, (1+r).   

Let U=u(C1, C2) be an individual’s strictly concave utility function and W = Y1 + 

Y2/(1+r) = C1 + C2/(1+r) be his or her intertemporal budget constraint. Income levels in 

the two periods are Y1 and Y2 , and the relevant interest rate is r.  These three variables are 

assumed to be parameters of the individual’s choice problem, which is to say they are 

assumed to be exogenously determined as they would be if they were determined by market 

forces. The individual’s choice is assumed to be over the timing of consumption.  (In other 

cases, decisions that affect future income may also possible, as with ones investment in a 

college education.)  

Since there are just two control variables and one constraint, we can solve the 

constraint for one of the two control variables in terms of the other and substitute it into the 

individual’s utility function.  For example, we can solve for C2 as:  

C2 = (1+r)Y1 + Y2 – (1+r) C1.       (11) 

Substituting this into the utility function yields:   

U = u(C1, (1+r)Y1 + Y2 – (1+r) C1).      (12)  

Differentiating with respect to C1 yields: 
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dU/dC1 = du/dC1 – (1+r)du/dC2 = 0 ≡ H at C1*    (13) 

Note that the first term, du/dC1, is the marginal benefit from current consumption and the 

second is its marginal cost, (1+r) du/dC2, a forward-looking consumer consumes in the 

current period (today) at the rate where the marginal benefit today equals its marginal cost in 

terms of reduced utility from future consumption.   

A bit of algebra also allows one to use the first order condition to characterize the 

tangency condition of an indifference curve diagram: 

(
𝑑𝑢

𝑑𝐶1
)

(
𝑑𝑢

𝑑𝐶2
)

= (1 + 𝑟)/1        (14) 

The implicit function theorem allows consumption in period 1 to be characterized as 

a function of the parameters of the individual’s intertemporal choice setting: 

C1* = c(Y1, Y2, r)             (15) 

with C2* = (1+r)Y1 + Y2 – (1+r) C1*   

An individual’s intertemporal pattern of consumption is a function of his or her present and 

future income and the interest rate (here it should be acknowledged that more than one 

interest rate may be relevant for reasons developed towards the end of this chapter.).   

The comparative statics of the individual’s choice can be characterized using the 

implicit function differentiation rule. For example, the effect of an anticipated increase in the 

interest rate on current consumption is: 

dC1*/dr = dH/dr / -dH/dC1  =         

       [(Y1-C1)(du2/dC1dC2) – du/dC2 - (1+r)(Y-C1)du2/dC2
2 ] / -dHdC1  (16) 

where dH/dC1 = [du2/dC1
2 - 2 (1+r)du2/dC1dC2 + (1+r)2du2/dC2

2] < 0.    

Note that the numerator can be greater or less than zero depending on whether the 

individual is a borrower or a saver in period 1.   

If he or she borrows, then Y-C1< 0 and the numerator is greater than zero.  The 

denominator is greater than zero so the overall effect of an increase in the interest rate on 

savers is to increase current consumption.  Intuitively, this is because an increase in interest 

rates reduces lifetime income for borrowers, and that decrease, together with an increase in 

the cost of borrowing induces them to decrease current consumption.  On the other hand if 
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the individual is a save in period 1, the effect on consumption in period 1 is ambiguous. The 

first and last terms in the numerator are positive in that case and the middle term is negative.  

If the first and last term dominate the middle term, then the effect of an increase in the 

interest rate on savings is positive.  Intuitively, the higher return on savings implies that he or 

she has more lifetime income to spend and so uses some of the increase for the present 

consumption by saving a bit less.   

The effect of an increase in future income can be developed in a similar way: 

dC1/dY1 = (dH/dY1)/-dH/dC1) =  

( [(du2/dC1dC2) - (1+r)(C1)du2/dC2
2 ] / -dH/dC1  (17) 

The numerator in this case is positive and the denominator (which is the same as in the 

derivation for the effect of an increase on interest rates on current consumption) is positive.  

An increase in future income, thus, tends to increase current consumption.  

These quite general findings imply that interest rates and expectations about future 

income are both important determinants of current consumption. 

Extensions 

Both the explicit functional form models and the abstract functional forms can be 

extended to characterize multiple periods. A multi-period utility function can be generated 

for the multiplicative form or abstract forms for utility function used above, by adding 

additional “C” terms for periods, 3, 4…and T with associated exponents in the multiplicative 

exponential case. The budget constraint in either case would set the present value of lifetime 

expenditures on the goods under consideration to the present value of income flows during 

the same planning period—which could be a lifetime.  

Another extension is to consider the possibility of continuous flows of utility and 

income rather than discrete flows. The mathematics of these characterizations is a bit 

different than for the discrete cases, as shown in the appendix of this chapter. 

V. The Market for Savings and Loans in a Setting without Risk 

The intertemporal consumption models imply that there may be gains to trade 

between persons who wish to borrow in the present because their income is less than their 
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desired consumption (Y1<C1*). Borrowing is possible when future income is sufficient to 

pay back the loan and provide an acceptable level of personal consumption as it is in this 

case. Those who wish to save instead of borrowing do so because their present income is 

greater than their desire for current consumption (Y1>C1*) and they prefer to shift spending 

to the period 2.   

In simple forms of financial markets, such persons might simply meet up with each 

other (as still occasionally happens) and the person seeking a loan (the borrower) would 

receive one from the person willing to make a loan (the saver).  In the risk-free environment 

assumed to this point in the book, such agreements would be relatively easy to consummate, 

but they might still take significant time to work out if the borrower wants a larger loan than 

any single saver is willing to make—as would likely be the case for loans to purchase a house 

or condominium. 

As financial markets emerged, this matching process was undertaken by various 

“middleman” firms (sometimes referred to as financial intermediaries), who would pay 

savers (rs) for the temporary use of their savings and charge a somewhat more than that 

amount (rb) for individuals who sought to borrow some money. Banks are one example of 

such firms—but there are many others that vary partly because of differences in the riskiness 

of the returns for savers and the riskiness of those receiving loans.  We’ll ignore the effects 

of risk for now; analyzing those effects are taken up in chapter 7.   

For now, we’ll continue to assume that all is known, and so there is no risk for the 

intermediaries nor for those making loans to them. The borrowers are all trustworthy and 

have sufficient funds to repay the loans in the future, and the intermediaries are honest or 

sufficiently fearful of penalties for fraud to behave as if they were honest.   

The difference between the amounts paid to those depositing funds in the bank 

(those loaning the bank their money) and those borrowing the money from the bank reflects 

the bank’s cost of doing business as well as the value added (reduced transactions costs) by 

their services.   

In a world of full information and certainty, banks would resemble Marshallian firms. 

They would tend to be use very similar technologies and inputs. In such cases, competition 
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would induce what might be called their middleman fees (rb-rs) to converge toward ones that 

are equal to the average cost of collecting deposits, assuring their safety, assessing the 

trustworthiness and future income of the persons taking out loans, and keeping accurate 

records plus the “normal” return on capital (e.g. a financial intermediary’s investments in 

vaults, buildings, computers, and so forth).   

Competition does not, however, reduce the markup to zero, because of the various 

costs that financial intermediaries bear to provide their services. The interest rates for 

borrowers are necessarily higher than that paid to savers (rb > rs), because the services 

provided by banks and other similar organizations are costly to produce.  In cases in which a 

bank has some monopoly power, as might be the case in towns with only a few banks, there 

will be a markup beyond that required to cover its costs and provide an “ordinary” rate of 

return on the capital used to provide the intermediary (banking) services.  

Except for the name for the price paid for some inputs (interest paid to depositors) 

and price of (interest) an intermediary’s output (loans to borrowers), the decision of 

intermediaries in a risk-free environment is basically another straight-forward application of 

the theory of the firm worked out in chapter 3, with some intertemporal aspects because of 

the nature of some of its inputs and of the demands for its services.  

Ignoring risks and opportunities for fraud by both banks and the persons taking out 

loans (borrowers), makes banking a very simple and largely risk-free business. The steady 

state size of a bank (supply of loans, Q) attempts to maximize the present value of profits 

from providing those services over its planning horizon T: 

 =  ∑ [(𝑟𝑏 − 𝑟𝑠)𝑄𝑡 − 𝑐(𝑄, 𝑤, 𝑟)]/(1 + 𝑟)
𝑡𝑇

𝑡=1     (18) 

The associated first order condition is:  

𝑄 =  ∑  [(𝑟𝑏 − 𝑟𝑠) − 𝑐𝑄]/(1 + 𝑟)
𝑡𝑇

𝑡=1 = 0 𝑎𝑡 𝑄∗
    (19) 

In a steady state [(𝑟𝑏 − 𝑟𝑠) − 𝑐𝑄] is a constant and can be factored out to yield: 

[(𝑟𝑏 − 𝑟𝑠) − 𝑐𝑄] [∑
1

(1 + 𝑟)𝑡

𝑇

𝑡=1
] = 0  

Which reduces to: 

  [(𝑟𝑏 − 𝑟𝑠) − 𝑐𝑄] = 0 𝑎𝑡 𝑄∗       (20) 
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The bank will have a portfolio of loans the equates its marginal revenue from loans to its 

marginal costs of providing and servicing those loans and their associate deposits. 

Note that in this case, the result is more or less the same as would have been the case 

for firms in the time-less models worked out in part 1.  This is not always the case, but 

provides the basis for abstracting from time used in that part of the text. 

The Demand and Supply of Credit 

The demand and supply of credit in a setting where both suppliers and demanders are 

price takers requires two markets to clear, the market for loans (populated by borrowers) and 

the market for savings. The demand side of the loan market is populated by borrowers. The 

supply side of this market is populated by savers. Firms are input purchasers in the savings 

market and final producers of the loan market. 

The results of the previous two sections imply that that the market supply of savings 

is an increasing function of the interest rate (rs), whereas the demand for that input to the 

intermediating firms is a decreasing function of that rate.  Conversely, the supply of loans 

from the intermediary is an increasing function of the borrowing rate, whereas it is demand 

is a decreasing function of the interest rate (rb). The market clearing interest rates in those 

two markets determine the equilibrium difference between the saving interest rate and the 

borrowing interest rate. Intermediaries adapt to that difference and operate at the scale 

implied by equation 20. 

VI. Intertemporal Aspects of Normative Policy Analysis: Benefit-Cost Analysis 

One of the most widely used tools of policy analysis is benefit-cost analysis.  In 

principle, benefit-cost analysis attempts to determine whether a given policy or project will 

yield benefits sufficient to more than offset its costs. 

Cost-benefit analysis, ideally, attempts to find policies that maximize social net 

benefits measured in dollars. (Every diagram that includes a dead weight loss triangle is 

implicitly using cost benefit analysis.) Economists use this approach  to characterize 

externality and monopoly problems. It is also used to criticize ideal and less than ideal public 

policies and taxes. Unfortunately, the data do not always exist for these calculations to be 
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made. The most widely used methods for dealing with uncertainty and time in Benefit-Cost 

analysis is to use various combinations of “Expected Value” and “Present Value” 

calculations as developed in the next chapter.  

Cost-benefit analyses carefully estimate the benefits, costs, and risks (probabilities) 

associated with of alternative policies through time. If several policies are possible, cost-

benefit analysis allows one to pick the policy that adds most to social net benefits (in 

expected value and present value terms) or that has the highest social rate of return. If only a 

limited number of projects can be built or policies adopted, then one should invest 

government resources in the projects or regulations that generate the most net benefits (the 

highest rates of return in terms of social net benefits). One can also use cost-benefit analysis 

to evaluate alternative environmental policies.  

When many projects can be adopted, the policy question is essentially a yes or no 

question is: Does the policy of interest generate sufficient benefits (improved air quality, 

health benefits, habitat improvements etc.) to more than offset the cost of the policy (the 

additional production costs borne by those regulated plus any dead weight losses and the 

administrative cost of implementing the policy)? 

The net-benefit maximizing norm implies that both good projects, and good regulations, 

should have benefit-cost ratios that exceed one, B/C > 1.  That is to say, the benefits of a 

project should exceed its costs if it is worth undertaking.  However, many of the goods and 

services generated by environmental regulations are not sold in markets and so do not have prices 

that can be used to approximate benefits or costs at the margin.  These "implicit prices" can 

be estimated, but the estimates may not be very accurate.  Thus, a good deal of the policy 

controversy that exists among environmental economists  is over the proper method of 

estimating non-market benefits and costs. 

For example, the recreational benefits of a national forest may be estimated using 

data on travel time.  However, this estimate is biased downward. We know that the benefit 

must be somewhat greater than the opportunity cost of driving to the forest!  Survey data 

can also be used, but people have no particular reason to answer truthfully (or carefully) to 

such questions as how much would you be willing to pay to access "this national forest," "to 
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protect this wetland," or to "preserve this species." In cases where the benefits and costs are 

not entirely predictable, the probability of benefits and costs also have to be estimated.  In 

cases in which the benefits or costs are largely subjective and concern things that are not 

sold in markets, these benefits and costs also have to be estimated (but without very reliable 

data).  The probabilities assigned to the various outcomes also are often difficult to estimate. 

Thus, although arguably better than nothing, benefit-cost analysis tends to be quite 

inaccurate. So instead of attempting to find the best (social net benefit maximizing) policies,  

cost benefit analysis often simply attempts to determine whether the benefits of a policy 

exceed its costs.  A policy is said to improves a situation if it generates Benefits greater than 

its Costs.  This is, of course, a normative statement—one based loosely on the utilitarian 

school of philosophy.  

In spite of all these difficulties, benefit-cost analysis has several advantages as method 

of policy analysis.  It forces the consequences of policies to be systematically examined.      It 

provides "ballpark" estimates of the relevant costs and benefits of regulations for everyone 

who is affected by a new regulation or program. 

A Relatively Simple Illustration of an Environmental Cost-Benefit Analysis 

Suppose that Acme produces a waste product that is water soluble and that its current 

disposal methods endanger the local ground water.  Acme saves $5,000,000/year by using 

this disposal method, rather than one which does not endanger the ground water.  What is 

the present discounted value of Acme’s savings (much of which is passed on to consumers) 

if the interest rate is 10% and Acme expects to use this method for 30 years? 

     The easiest method is to use the formula P = v [(1+r)
T

 - 1] / [r (1+r)
T

]        

although the additive formula, P = Σ ( Vt/(1+r)
t
 ), can also be used. Here:   

  P =  (5,000,000) [ ((1+.10)30 - 1)]/[(.10) (1+.10)30] = $49,574,072.44 

One could also approximate the present value of Acme’s cost savings using the present value 

of an infinite series formula (P=F/r) which yields (5,000,000/0.1 = $50,000,000.00.  Note 

that this simpler calculation produces nearly the same answer, and so is often a good way to 

check one’s math.  
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Suppose that an environmental law is passed which requires firms like Amex to adopt 

the more costly but safer technology.  If the fine assessed is $10,000,000, what probability of 

detection and conviction will Amex adopt the safer technology if its discount rate (interest 

rate)  is 10% ?  The expected fine in a given year has to be greater than the expected cost 

savings,  Thus,  P*10,000,000 > 5,000,000 in order for the fine to affect Acme’s choice.  (In 

this case the interest rate is not necessary for finding the solution because it is assumed that 

violations would be detected and fines paid annually. Although, we could also use present 

values for both the penalties and cost savings.)  The smallest probability of punishment that 

“works” is 0.5, because this makes the expected fine equal to the expected cost savings.  

Suppose that administering the enforcement regime costs $1.000,000/year that 

produces a 0.75 probability of punishment. What is the smallest annual external damage that 

can justify the program?  Given the fine and probability of being caught and punished, we 

know that this program will induce Acme to clean up, so the only important question is 

when the present value of the damages (net of administration costs) avoided are greater than 

the present value of  the extra costs borne by Acme (and its consumers). 

Intuitively, we can see that if the damage per year (D) less the administrative costs 

($1,000,000/year)  are greater than the cost imposed then the program is worthwhile in cost-

benefit terms.  (D - $1,000,000 > $5,000,000).  This implies that the damages must be greater 

than  $6,000,000 per year.  If the damages vary a bit through time, then we would need to 

use present and expected values to figure this out.  

In that case the present value of the damages avoided minus the present value of the 

administrative costs would have to be greater than the present value of the cost increase 

imposed on Acme (and its consumers).  If the damages were random, perhaps because 

rainfall is random, then we would have to compare the expected damage reductions (net of 

administrative costs) with the cost of “cleaning up.” 

For example, suppose that on rainy days the “dirty” waste disposal system causes 

$20,000,000of damages and that on dry days, the “dirty” waste disposal causes no damages 

to the local ground water supply.   Suppose that it rains one third of the time.  In this case, 
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the expected damages from the “dirty” waste disposal system are: De = (.33) ($20,000,000) + 

(.67) (0) = $6,666,666 per year. 

In this case the cost of eliminating the damage is the cost of the cleanup (more 

expensive waste disposal system) plus the administrative costs ($5,000,000 +$1,000,000) 

while the benefits are the expected reduction in damages: ($6,666,666 per year).  The 

expected present value of the social net benefits from the program over  thirty years can 

be calculated with formula Pe = v [ ((1+r)
T
 - 1)/r (1+r)

T
] given a planning horizon (T) and 

discount rate (r). Let T= 30 and r = 10% again. 

Pe = ($666,666) [((1+0.1)
30

 - 1)/(0.10) (1+0.1)
30

] =  ($666,666) (9.4269)  

Thus, Pe = $6,284,603.40  

Given all these details, this program will produce a bit more than 6.28 million dollars of 

expected net benefits over a thirty-year period (in present value terms). 

VII. Conclusions 

Incorporating time into the models allows one to think systematically about long 

term plans and how they are affected by the discount rates used.  Intertemporal choices have 

implications not considered in the timeless neoclassical models, namely the possibility of 

saving and borrowing. Such decisions may be used to smooth out one’s lifetime 

consumption in order to increase lifetime utility.   

This possibility at least partly accounts for the existence of financial interemediaries 

and their various methods for shifting the resources of savers to borrowers in the present 

and future income from present day borrowers to present day savers in the future. The 

entire financial sector of an economy would not exist without individual interests in shifting 

purchasing power from the future to the present or from the present to the future. 

In settings where income is subject to random shocks, one may also save for reasons 

unrelated to consumption smoothing, such as to maintain reserves to deal with risks faced 

the ordinary course of life. The effects of risks and uncertainty on individuals and thereby on 

markets is taken up in the next chapter. Another possible reason to save is to provide future 
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transfers of various kinds to one’s children, friends, family, or foundations.  That topic is 

taken up, albeit briefly, in chapter 17.  

This chapter shows that an interest in income smoothing are a natural implication of 

diminishing marginal utility and is a sufficient interest to generate at least a modest financial 

sector.  More complete analysis of individual interests in saving simply imply that the 

financial sector. Of course, the existence of a financial sector is, itself, of interest, but it is 

also a significant factor in the founding of new firms and for innovation, both of which are 

important determinants of the extent of both financial and non-financial markets. 
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Appendix 13.1: Continuous Time, Dynamic Programing, and Intertemporal 

Choice 

 

To be written 

 

 

 

Appendix 13.2: Some Practice Exercises  

1. Suppose that Al wins the lottery and will receive $100,000/year for the next twenty 
five years.   What is the present value of his winnings if the interest rate is 6%/year?, 
5%/year, 3%/year? How much more would a prize that promised $100,000/year 
forever be worth?  

2. Suppose that Al can purchase lottery tickets for $5.00 each and that the probability of 
winning the lottery is P.  If Al wins, he will receive $100,000 dollars per year for 20 
years. The twenty year interest rate is 3%/year.   

What is the highest price that Al will pay for a ticket if he is risk neutral? Determine 
how Al's willingness to pay for the ticket increases as P, the probability of winning, 
increases and as the interest rate diminishes.  

3. Suppose that Amex produces a waste product that is water soluble and that its current 
disposal methods endanger the local ground water.  Amex saves $1,000,000/year by 
using this disposal method rather than one which does not endanger the ground 
water. What is the present discounted value of  this waste disposal technology to 
Amex if the interest rate is 6%?  if it is 4%? 

4.  Suppose that an environmental law is passed which requires firms like Amex to adopt 
the more costly but safer technology.  If the fine assessed is $2,000,000, what 
probability of detection and conviction will Amex adopt the safer technology if its 
discount rate  is 5%?   if it is 10% ?   

5. Suppose that global warming is caused (at the margin) by CO2 emissions and that to 
reduce CO2 emissions enough to affect future temperatures requires policies that will 
reduce economic output by 5% per year. U. S. GNP is currently about 15 trillion 
dollars and is expected to grow by about 2.5% per year in the future. How large do 
expected damages have to be to justify such an aggressive environmental policy? 

Hint 1: in this case, the future value of GNP is  Yt = 15*(1+.025)t , because of 
economic growth, which works like compound interest. The reduction in non-
environmental income in year t is thus Vt = (.05)15*(1+.025)t 
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Hint 2: This implies that present values can be calculated using the summation 

formula  P =∑T ( Vt/(1+r)
t 
by substituting for Vt = (.05) 15*(1+.025)t  

{ That is to say, P = ∑T ( (.05) (15 trillion) (1+0.025)t/(1+0.05)
t
 

Hint 3: more generally one can write this expression as P = ∑T (Vo (1+g)t/(1+r)
t 

where g is the economic growth rate, r is the discount rate (interest rate), and Vo is the 
initial value of the “thing” that is growing at rate g. 

Hint 4: It turns out that in a present value problem with an infinite planning horizon, 
one can use a relatively simple formula to calculate the present values of a series of 
values that grow by a constant percentage each year:  

P = Vo / (r-g) where Vo is the initial value, r is the discount rate (or interest rate), 
and g is the long-term growth rate.)  

 [Now you can easily calculate the present discounted value of the cost of reducing 
CO2 emissions in this way, which is approximately 30 trillion dollars, given all the 
assumptions made.] 


